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Inverse wave scattering problem

Generic setup: A collection (array) of sensors probes a medium
with signals (pulses, chirps) that generate waves which are scat-
tered by inhomogeneities. The sensors collect the scattered
waves and the goal of the inversion is to estimate the medium.

Numerous applications: medical ultrasound, nondestructive eval-
uation of structures, radar imaging, oil exploration, etc.




Inverse problem for wave equations

e Sound waves: pressure p(t,x) and velocity v(¢, ) satisfy

o(x)
c(x)
op(t,x) + o(x)e(x)V -v(t,z) =0, t>0, xecR3.

v(t,x) + Vp(t,x) = F(t,x)

Medium modeled by acoustic impedance o(x) & wave speed c(x).

e Electromagnetics: electric field E(t,x) satisfies
1
c2(x)

Medium with constant magnetic permeability, wave speed c(x).

V xV x E(t,z)+ O2E(t,x) = F(t,x), t>0, € RS>,

e F'(t,x) models the excitation. Homogeneous initial conditions.

Inversion data: p(t,x) or E(t,x) at the receiving sensors.




Basic (acoustic) model

e Acoustic pressure in medium with constant density

1
8t2 —Alplt,x;xs) = -V -F(t,x), pit,x,xs) =0 for t < 0.
c?(x)

e Emitter is a point source: — V- -F(t,x) =d6(x —xs) f(t)

e In array imaging the signal is a pulse f(t) = e “olBy(Bt)

0;
display of Real[f(t)] % W_

It oscillates at central frequency w, and is supported at ¢t ~ 1/B,
where B = bandwidth

@)= [ drp@et = (2 )




Why a pulse?

The length scale relations are important in inversion:

e Central wavelength )\, = 23—0‘30
e Distance (range) L between array and imaging scene.
e Linear size a of array aperture (may be synthetic).

e Distance ¢,/B traveled by waves over pulse duration.
In radar and seismic applications: L 2 a > co/B > Ao

~ high frequency (small wavelength) regime.

As a rule, the smaller Ao, and ¢,/B are, the better the imaging.
The ratio a/L also plays a role.




Chirped signals and pulse compression

e Antennas have limited instantaneous power: |f(t)|? < Pmax.
For a signal of duration 7T, the emitted energy is < T Pmax-.

e The received energy is a fraction of this (partial reflection, ge-
ometrical spreading). This energy should be large to distinguish
from noise ~~ Use more antennas or increase duration 7.

Chirped (linear frequency modulated) signal f(t) = e_iwot"‘i’ytzgo(%).
Assuming /7T > 1, the Fourier transform is

—~ ) _-(w—wo)2 _
\/ Y 2T

Note that T > 2= =\/F~ T>1/B

Long signal is compressed to get a pulse of duration ~ 1/B.




Chirped signals and pulse compression

e Pulse compression realized by convolving the echoes with f(—t)

e \Why does this work?

et = F(1) % F(~1)
= / T F e

o o le(*55”)
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~ 2 "\ 2B

Example: if o(s) = 1[_1/0 1/2](s) we get
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oW

fo(t) = Te “olsinc(Bt).

We have transformed the signal with duration T > 1/B to a
pulse oscillating at frequency w, and support t ~ 1/B.




Forward (data) model

e T he acoustic pressure is a superposition of time harmonic waves

oo .
ptaias) = [ ZEp(w,@iade ™!
—00 27
satisfying the Helmholtz equation

w2

c?(x)

with outgoing (radiation) conditions.

Ap(w, z; Ts) + plw,z;xs) = —f(w)d(x — xs)

e We have access to p(w,x,; xs) for |w—wo|] < B, r =1,..., Ny
aﬂd S:].,...,Ns.

e Forward model relates unknown c(x) to these measurements.

This is a very complicated mapping!




What can we invert for??

e Inversion model uses separation of scales:

1 1
2(x) . 2(x) [1+ p(z) + p(x)]

co(x) = smooth, determines kinematics of waves (travel times).

p(x) = rough part, is the reflectivity that we wish to determine.

nw(x) models small variations at small scale (clutter), that may
have a cumulative scattering effect on the wave.

e VWWhat can we estimate?

- Smooth co(x) (velocity analysis): Travel time tomography
(many applied papers, theory of Uhlmann, Stefanov, Vasy). Dif-
ferential semblance optimization (Symes). Here ¢, = constant.

- Reflectivity p (imaging problem).

- Clutter cannot be estimated ~» random model of uncertain pu.




Born approximation: linear forward model

e For ¢, = constant and neglecting clutter,

w2

(& + £2)p(w, mi@s) = — (@)@ — @) = ~5p(2)p(w, @; T).

e Inverting the Helmholtz operator using Green’s function

Wt (T, Ts) z — x|
T(ma $3> — )

4|z — xg| Co

G(wa €T, wS) —

we get
A ~ w2 R ~
P, @i @) = F@)G(w,zr @)+ [ dy p(y)p(w,y; @) G(w,2r,y).
(0]
e Born (single scattering) approximation

ﬁ(wa Y, wS) ~ f(w)@(w, Y, 333)

is justified for p of small support, like a point reflector.
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Data model

e Additive noise, single scattering model

D(ta Lr, CBS) — p(ta Ly, :BS) _I_ N(ta Lr, :BS)

Typically N(t, zr, xs) is Gaussian, uncorrelated over the sensors.

e By time windowing the direct wave from xs to x,,

Wt (Y,xs)  piwT(y,xr)

. dw w?
p(t, @r; Ts) ~ Q——f(w) /dyp(y) Ty — xs| 4|y — |
- £ [t —7(y,zs) — 7(y, ivr)}
= ~ame O)Q/dyp(y) y — xs||y — 0| |

e Depending on support of p and size of array, geometrical
spreading factors may be approximated by a constant.
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Numerically simulated data*®

Scattered wave by point reflector plotted vs. time on abscissa
and receiver location on ordinate. Center sensor emits pulse f(t).

Multiply scattered echos among point reflectors are ignored.

*Simulations by Chrysoula Tsogka. 12



Image formation - Reverse time (Kirchhoff) migration

e T he imaging function

() = 3 zf D(r(y,xs) + r(y, @), @r, @s)

r=1s=1

is expected to peak at points y in support of the reflectivity.

e Resolution in direction of propagation (range) is c¢o/B. The
pulse width 1/B determines precision of travel time estimation.

e Resolution in cross-range is ~ AoL/a.
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Noise vs. clutter effects in migration imaging*

Noise

receiver location

receiver location
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Noise is averaged out by summation (over large aperture).
Clutter is harder to deal with.

*Simulations by Chrysoula Tsogka.
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Multiple scattering effects in

media with strong reflectors™
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*Simulations by Alexander Mamonov
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